
Low-Cost Pathways Towards Formal Methods Use
Martin S. Feather

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, MS 125-233

Pasadena CA 91109, USA
+1 818 354 1194

Martin.S.Feather@Jpl.Nasa.Gov

1. ABSTRACT
In current practice, formal methods are
perceived as high-cost activities, and hence
their use is recommended primarily for cases
warranting the highest possible level of
assurance. However, opportunities abound for
beneficial applications of formal methods
across a broad spectrum of cases, provided
low-cost pathways towards their introduction
and use can be identified. This premise is
illustrated on a fragment of space vehicle
requirements. Other researchers have studied
fragments similar to this to illustrate various
analysis techniques. Here it is shown that
judicious choice of representation permits
(some) formal analysis to be conducted
immediately. Furthermore, this representation
is made alluring by automatically generating
textual and tabular representations from it.
The net result is a low-cost (perhaps even cost-
savings) approach to manipulating
requirements of this nature, with the
beneficial side effect of permitting formal
analysis of those requirements at no extra cost.
1.1 Keywords
Analysis, flowcharts, formal methods, requirements, tabular
representations, traceability.

2. INTRODUCTION
A typical scenario of formal methods application is to
identify some tricky portion of a design whose correctness
is critical to the project in question, expend time and effort
to recast that design as a formal specification, and challenge
that specification with increasingly sophisticated analysis
and validation techniques. The kinds of operations
performed on a formal specification might include type
checking, simulation, symbolic evaluation, model checking
or theorem proving. It is common practice to recommend
this as a cost-effective approach on "important"
applications, where presumably the cost of failure is high,
thus justifying the expense of the approach. For example,
the NASA formal methods guidebook [8] states, in the
section on Cost Considerations, that: "… prudent advice to
projects would be the following. In the context of a stable,
controlled software process that includes an emphasis on
quality assurance in the requirements phase, generate a
formal specification for a core subset of important
requirements. …"

The premise of this paper is that opportunities abound for
beneficial applications of formal methods across a broad
spectrum of cases, provided low-cost pathways towards
their introduction and use can be identified. The premise is
illustrated on a fragment of space vehicle requirements.
Other researchers ([2] [9]) have studied fragments similar
to this to illustrate various analysis techniques. Herein, it is
shown how the judicious choice of representation of these
requirements would allow (some) formal analysis to be
conducted immediately, and at no extra cost. Furthermore,
this representation is made alluring by showing how from it,
textual and tabular representations of these requirements
could be automatically generated. The net result is a low-
cost (perhaps even cost-savings) approach to manipulating
requirements of this nature, with the beneficial side effect of
permitting immediate formal analysis of those requirements.

The paper is organized as follows: Section 3 introduces the
example's requirements. Section 4 shows how to represent
these requirements in a machine-manipulable fashion,
thereby admitting to immediate and straightforward
analysis. Section 5 discusses the advantages to multiple
representational forms of requirements, as exemplified by
the example's requirements documentation. Section 6 shows
the automatic generation of textual and tabular forms of
those requirements from the machine-manipulable form,

In Proceedings of the 2nd Workshop on Formal Methods in Software Practice (FMSP’98),
Mar 4-5, 1998, Clearwater Beach, FL, pp. 85-91

thus making the adoption of the machine-manipulable form
more alluring. Section 7 exhibits how traceability between
the multiple requirements representations can be provided.
Finally, section 8 concludes.

3. EXAMPLE - SPACE VEHICLE FDIR
The source of the example for this paper is a draft of
software requirements for a space vehicle. The fragments of
requirements concern the Bus Failure, Detection, Isolation
and Recovery aspects, which concern handling of failures in
communication buses.

The requirements document employs two representations:
sets of paragraphs of structured text, and a flowchart-like
depiction. A sample of the textual representation is shown
in the paragraphs that follow, while the flowchart appears
below (numbers have been appended to the flowchart nodes
for reference within this paper):

RT Failure Detection/Skip requirements

While acting as the bus controller, the
C&C MDM CSCI shall set the e,c,w, indicator
identified in Table 3.2.16.3-I E,C,W BC/RT Event
Definition, set failure status to "failed" if errors of
CSE_RTSA messages occur in two consecutive

processing frames, a backup RT is not available, the
transaction errors are from only one RT, and:

� the SPD card has been reset within the last 100
seconds, the current bus channel has been reset
within the last 10 seconds, and the bus channel has
been switched in the last 10 seconds

� the SPD card has not been reset within the last
100 seconds, the channel reset is inhibited, the
current bus channel has not been reset within the
last 10 seconds, and the bus channel has been
switched in the last 10 seconds

� the SPD card has not been reset within the last
100 seconds, the channel reset is inhibited, the
current bus channel has been reset within the last 10
seconds, the alternate bus channel is not available,
and the bus channel has not been switched in the
last 10 seconds

� the SPD card has not been reset within the last
100 seconds, the current bus channel has been
reset within the last 10 seconds, the alternate bus
channel is not available, and the bus channel has
not been switched in the last 10 seconds

The requirements document contains several such sets of

textual paragraphs, one set for each set of paths from node

Poll Next
Processing

Frame
Log it

Transaction error
in Processing
Frame “N”?

Transaction error in
Processing Frame

“N+1”?

Is Transaction Error
from a CSE RTSA?

Poll Next
Processing Frame

Is Transaction
Error from a
CSE RTSA?

Operator
must help

Has BC switched
in last 20 sec?

Switch all
powered RT’s on
this bus to their

Backups

Power on
cold C&C &
Switch Bus
control to

backup BC

Is Backup BC
Available

Is SPD Card
reset

inhibited?

Reset
SPD
cardIs Backup

RT
Available

Transaction error
from multiple

CSE RT’s

Has SPD card
been reset within
the last 10 major

frames

Switch
to

backup
RT

Has current channel
been reset within the

last major frame Set Skip Bit
for

CSE_RTSA
messages of

this RT

Reset Channel

Is Channel reset
inhibited?

Time
Out for

Reconfi
guration

Pause the
BUS FDIR

logic on
both SPD
channels

until
channels
are back
on-line

Time Out for
Reconfiguration

Switch to alternate
channel

Is Switch to alternate
channel inhibited?

Has Bus Channel been Switched
within the last major frame

Log it

No

No

No

No

No

No

No

No

No

No
No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

Yes

No

Yes

0
2

3

1

4

5

6

7

8

9

10

18 19
20

17

21

15

16
22

14

11

12

13

23

25

24

0, "Poll Next Processing Frame", to a gray-colored
action node of the flowchart. These total several pages. The
set of paragraphs shown above correspond to the decision
paths in the flowchart from node 0 to node 25, "Set Skip
Bit for CSE_RTSA messages of this RT" (towards the
lower right hand corner of the flowchart).

Both representations describe the decision process to follow
to determine actions to take in the event of certain
"transaction errors". Presumably this decision process
should be identical in both representations. For reasons of
conciseness perhaps, some of the textual representation's
details on the queries to evaluate and actions to are not
given in the flowchart. The textual descriptions spell out
timing details (e.g., "last 100 seconds") whereas the
flowchart employs somewhat more generic and/or terse
descriptions (e.g., "10 major frames"). Nevertheless, these
two representations provide alternative means of expression
of the same overall decision process. For example, the first
bulleted paragraph of the textual requirements states
"CSE_RTA messages occur in two consecutive
processing frames", corresponding to the "Yes" choices
of nodes 1, 3, 5 and 7. Likewise, it states "a backup RT is
not available", corresponding to the "No" choice of node
23, and "errors are from only one RT", corresponding to
the "No" choice of node 14. Each of the four bulleted items
captures one of the four pathways through the intermediate
choice nodes 8,9,11 and 12. Because of the mismatch in
level of detail of the two forms of description, this
correspondence is sometimes a trifle obscure.

Section 6 will show how a structured textual style of
description can easily be generated automatically from the
flowchart representation. This suggests that it would suffice
to develop and maintain a single representation (the
flowchart), and generate the textual descriptions as needed,
rather than construct them by hand. The next section
discusses the advantages of making the flowchart the
primary representation.

4. FORMAL ANALYSIS OPPORTUNITIES
The intent of this experiment is to illustrate a pathway via
which formal methods can be introduced at little or no
additional cost. The expression of the requirements
information in the form of the flowchart nodes-and-arcs
representation is the foundation of this pathway. This
section considers simple formal analyses that can readily be
conducted in terms of this flowchart representation.

Highly desirable properties of the bus channel management
requirements are that they be complete (i.e., the
requirements should state a course of action to take for
every possible combination of circumstances) and
consistent (i.e., for no possible combination of
circumstances should the requirements state more than one
course of action to take).

The textual representation of the requirements is not
conducive to either of these kinds of analyses.

Unfortunately, the fully detailed requirements of this system
are expressed textually, while the flowchart is a simplified
accompaniment. Hence, those conducting validation and
verification efforts of actual requirements similar to these
have had no choice but to work with the textual
requirements. [2] reports such work, revealing:

� the difficulty inherent in unambiguously interpreting
textual requirements,

� the virtue of a more formal representation, in
particular, they employed a Leveson-style [4] tabular
representation of the requirements’ complex conditionals,
and

� the use of a mechanical checker of the aforementioned
completeness and consistency properties (also referred to
as coverage and disjointness) - after initial experiments
with PVS [7], they used SCR* [5] for this purpose.

Overall, this appears a somewhat time-consuming, and
hence costly, V&V activity. In contrast, the use of the
flowchart as the full-fledged representation considerably
simplifies this whole process, because it permits easy
analysis, both visually (at least for small flowcharts) and
mechanically:

� Incompleteness would be manifest as missing arrows
and/or nodes. For example, a node without an emerging
arrow labeled "Yes" would indicate an unconsidered case.
Similarly, an arrow that did not terminate on a node
would indicate a case that, while considered, lacked a
specific course of action. These are easy to detect by
visual inspection on small flowcharts, or by a trivial
mechanical check run over the internal representation.

� Inconsistency would be manifest as duplicated arrows.
For example, a query node with two "Yes" branches
emerging and leading to different destinations. Such
inconsistency is also easy to detect by visual inspection
and trivially mechanizable checks. Note that it is quite
acceptable for different sets of conditions to lead to the
same course of action, readily recognizable in the
flowchart where multiple arrows point to the same node.

Small programs have been written to execute these, and a
representative set of similar checks and queries (for
example, the query of whether node 13 could possibly be
reached [i.e., the reset channel action could be taken] if the
"No" branch of node 8 has been taken [i.e., the Bus
Channel has been switched within the last major frame]).
The nodes-and-arcs representation of the flowchart was
found to be highly conducive to this. In contrast, the
English text is somewhat opaque to analysis. For example,
it takes some patience to study the textual requirements
sample given in section 3 enough to realize that it does not
appear to match the flowchart! The text's first paragraph
includes the clauses "…a backup RT is not available, the
transaction errors are from only one RT…", obviously
referring to node 23's "No" branch downstream of node
14's "No" branch. However, each of the bulleted items

begins by referring to resets of the SPD card, i.e., node 15,
which is downstream of node 14's "Yes" branch, rather
than its "No" branch!

5. ADVANTAGES OF GENERATING THE
STRUCTURED TEXTUAL
REQUIREMENTS
The simple analyses of the previous section can be done at
very low cost given a flowchart representation of
requirements. However, the fragment of space vehicle
requirements studied employed a flowchart as, seemingly,
an adjunct to the more thorough textual requirements. Thus
the approach being advocated here is intended to suggest
opportunities for future requirements activities. This can
become alluring if it can be done at no extra cost over
current practice.

Observe that there are two representations of the same
requirements, a flowchart, and structured textual
paragraphs. Multiple representations are desirable to have,
but to manually maintain them is an expensive and error-
prone activity. The suggested approach is to generate one of
the representations from the other.

Obvious reasons for the desirability of multiple
representations include:

� different people may be comfortable with different
representations;

� alternative representations may draw attention to
different aspects of the requirements;

� alternative representations may be conducive to
different forms of analysis;

� contractual obligations may necessitate delivery of the
requirements in a particular representation, not
necessarily the one that the requirements engineers would
wish to work with.

In particular, natural language representations have almost
universal appeal to human readers. Until people become
adept with a formal notation, they will favor natural
language descriptions over that notation. For example, [11]
reports on the appeal of a specification paraphraser tool that
produced English descriptions from a specification
language, thus alleviating the new reader from the need to
first learn the specification language's syntax. Since there
will often be such reluctance to have to learn yet another
formal notation, natural language is likely to retain its
appeal as a means of expression. An advantage to having
examples generated from the specific requirements
fragments is that it provides a description of the meaning of
the notation on the very example in which the reader has an
interest.

Surprisingly, even when people are conversant with some
formal notation, they may continue to benefit from a natural

language description of requirements in addition to a formal
language description of the same. An illustration of this is
reported in [12] (follow-on work to the specification
paraphraser). A second tool was developed, to generate
English descriptions of execution traces (generated by a
symbolic evaluator of the specification language). This
second tool turned out to be helpful to people familiar with
the specification language, as well as those unfamiliar.
Swartout states the reason for this as being that: "… an
English translation gives the specifier an alternate view of
his specification which highlights some aspects of the
specification which are easily overlooked in the formal Gist
notation".

This effect would probably hold true of any pair of
notations, whether or not one of them was natural language.
Indeed, using the same notation, but reorganizing the
presentation, could have the same beneficial effect of
highlighting different aspects of a description.

The disadvantages of manually maintaining multiple
representations include:

� the cost of creating multiple representations of the
same requirements information;

� the cost of maintaining multiple representations as
changes occur to the requirements;

� the need to ensure that the multiple representations
indeed describe the same requirements information. (This
can be circumvented by always giving priority to one
representation's interpretation in the case of differences,
but this is a far from satisfactory solution).

The generative approach, in which requirements are
expressed once in one representation, and from which the
other representation is automatically generated, yields the
best of both worlds – multiple representations at minimal
cost and error. The next section shows the feasibility of
generating structured text from flowcharts, illustrated on the
space vehicle requirements fragments.

6. AUTOMATIC GENERATION OF
ALTERNATIVE REPRESENTATIONS
Generation of a (somewhat naive but passable) structured
text representation from a representation of the flowchart is
straightforward. As evidence of this a simple program,
flowtalk, has been constructed to do such text generation
from a nodes-and-arcs representation of the flowchart. In
this experiment, the nodes-and-arcs representation has not
been linked to a graphical portrayal of the flowchart,
although to do so would be a small additional programming
effort (or falls within the capability of existing tools).

An example of flowtalk's output is shown on the next
page. This text corresponds to the decision paths in the
flowchart from node 0, the "Poll next processing frame"
node in the upper left hand corner, to node 25, the "Set

Skip Bit for CSE_RTSA messages of this RT" node
towards the lower right hand corner of the flowchart.

IF Poll next processing frame
AND Transaction error in processing
frame N?
THEN Log it
AND Is transaction error from a CSE
RTSA?
THEN Poll next processing frame
AND Transaction error in processing
frame N+1?
THEN Log it
AND Is transaction error from a CSE
RTSA?
AND
 (
 IF Has bus channel been switched
 within the last major frame?
)
 OR
 (
 IF NOT Has bus channel been
 switched within the last major
 frame?
 AND NOT Is switch to alternate
 channel inhibited?
)
AND
 (
 IF Has current channel been reset
 within the last major frame?
)
 OR
 (
 IF NOT Has current channel been
 reset within the last major frame?
 AND Is channel reset inhibited?
)
AND NOT Transaction error from
multiple CSE RTs?
AND NOT Is backup RT available?
THEN Set skip bit for CSE_RTSA
messages of this RT

The same text-generating capabilities can equally well be
applied to present individual query results. For example, the
query of paths from node 7 to node 11:

Flowchart-node-numbers: ((7 8 11) (7 8 9 11))

Structured text:

IF Is transaction error from a CSE RTSA?
AND
 (
 IF Has bus channel been switched
 within the last major frame?
)
 OR
 (
 IF NOT Has bus channel been switched
 within the last major frame?
 AND NOT Is switch to alternate channel
 inhibited?
)

Parentheses and indentation are used to help disambiguate
the precedence of logical expressions. In contrast, [2] found
this aspect of hand-written English requirements (similar to
those on which this experiment is based) particularly hard
to disambiguate in this regard.

The generated form adheres more directly to the structure
of the flowchart than does the original English statement of
the requirements. For example, the flowchart's paths from
node 0 to node 25 bifurcate at node 8, re-converge and then
bifurcate again at node 11. In the original English
statement, each of the four possible resulting paths (two
alternatives through the first choice, times two alternatives
through the second) is a separate bulleted item. In
generating the English, it is straightforward to arrange to
have it mirror the flowchart's structure - the result is the
 (…)
 OR
 (…)
AND
 (…)
 OR
 (…)
layout. Of course, if desired, it is also straightforward to
arrange to generate a separate clause for each of the four
paths.

In addition to generating text, flowtalk can also generate
Leveson-style AND/OR tables for the conditional part of
the decision paths from one node to another. The table
generated for paths from node 0 to node 25 is shown below.
This table shows the four combinations of conditions - the
rows are the conditions involved, the four columns of T/F/.
the combinations of those conditions' values for each case.

Transaction error in processing frame N? T T T T
Is transaction error from a CSE RTSA? T T T T
Transaction error in processing frame N+1? T T T T
Is transaction error from a CSE RTSA? T T T T
Has bus channel been switched within the last major frame? T T F F
Is switch to alternate channel inhibited? . . F F
Has current channel been reset within the last major frame? T F T F
Is channel reset inhibited? . T . T
Transaction error from multiple CSE RTs? F F F F
Is backup RT available? F F F F

This table is comparable to those produced by hand as
reported in [2].

7. PROVIDING TRACEABILITY
BETWEEN REPRESENTATIONS
There is one potential difficulty with this generative
approach. A purely generated representation cannot be
modified directly, for to do so would violate the
correspondence between that derived representation and the
source representation from which is derived. Instead, the
corresponding modification must be made on the source
representation. If generation were two-way, that is, given a
pair of representations, one could be derived from the other,
and vice-versa, then modification could be made to directly
to either representation, and the other one re-generated.
However, generation is often far easier to do in one
direction than in the other.

Such is the case with flowcharts and their textual
equivalents. It is easy to generate structured text from an
arbitrary flowchart (as demonstrated by the program whose
outputs have been shown), but hard to generate a flowchart
from structured text, and also hard to constrain people to
write structured text without straying from the dictates of
the structuring scheme. Natural language is abundantly
expressive, with consequent difficulties when it comes to its
automated processing. Research successes on this front
(e.g., [1], [3]) have tended to focus on the extraction of
entity-relationship models, abstractions, data-dictionaries,
and the like, but flow-of-control remains a challenge.

To ameliorate this problem, the flowtalk program
provides the option to generate simple traceability
information linking the two representations. When this
option is chosen, traceability information is generated and
embedded in to the text itself, so that it is easy to refer back
to the portion(s) of the flowchart from which the text is
derived. This is accomplished by labeling each of the nodes
in the flowchart (which was already done in order to
represent the flowchart), and embedding these labels into
the generated text. A fragment of the generated structured
text show earlier is repeated below, this time with the trace
information included. The numbers in square parentheses
correspond to the node numbers in our representation of the
flowchart, and so can be used to trace back to the actual
node in the flowchart from which that portion of text is

derived.

AND [7] Is transaction error from a CSE
RTSA?
AND
 (
 IF [8] Has bus channel been switched
 within the last major frame?
)
 OR
 (
 IF NOT [8] Has bus channel been
 switched within the last major frame?
 AND NOT [9] Is switch to alternate
 channel inhibited?
)
AND
 (
 IF [11] Has current channel been reset
 within the last major frame?
)
 OR
 (
 IF NOT [11] Has current channel been
reset within the last major frame?
 AND [12] Is channel reset inhibited?
)
AND NOT [14] Transaction error from
multiple CSE RTs?
AND NOT [23] Is backup RT available?
THEN [25] Set skip bit for CSE_RTSA
messages of this RT

When generating Leveson-style tables flowtalk is able to
insert traceability information in a similar manner, as shown
at the bottom of this page.

8. CONCLUSIONS
This paper has illustrated how a set of real-world
requirements could be represented in a machine-
manipulable form, and thereby become immediately
amenable to easy analysis. This is based on one of the
representational forms already employed by the
requirements documentation, with the added advantage that
the second representational form is automatically generable
from the first. A popular tabular representation is also
automatically generable. Furthermore, simple traceability
information can also be generated between the

[1]Transaction error in processing frame N? T T T T
[3]Is transaction error from a CSE RTSA? T T T T
[5]Transaction error in processing frame N+1? T T T T
[7]Is transaction error from a CSE RTSA? T T T T
[8]Has bus channel been switched within the last major frame? T T F F
[9]Is switch to alternate channel inhibited? . . F F
[11]Has current channel been reset within the last major frame? T F T F
[12]Is channel reset inhibited? . T . T
[14]Transaction error from multiple CSE RTs? F F F F
[23]Is backup RT available? F F F F

representational forms. The net result is a plausible means
to introduce (simple) formal methods techniques into
practice, in a way that dovetails with current styles of
expression. This is intended to be alluring by virtue of its
ability to automatically generate the second representational
form, i.e., might save some effort even without taking into
account the increased analyzability.

An important aspect that has not been considered is
scalability. Flowcharts much larger than a single page cease
to be convenient or understandable. As with any approach,
some form of information hiding and hierarchical
structuring is required to handle large sets of requirements.
It is interesting to note that the existing space vehicle
requirements do already take some small steps in this
direction, by employing terse descriptions in the flowchart
representation, and by relegating to further tables action
details that do not themselves affect the decision process.

Flowtalk is just a simple program, far less sophisticated
than the tools commonly brought to bear in formal methods
activities. Likewise, its generation of textual descriptions is
simplistic (see, for example, [10] for much more impressive
work in this area), and its approach to maintaining multiple
viewpoints is also straightforward (again, for comparison,
see [6]). Yet, by application to a judiciously selected
representation of the requirements, this approach is capable
of performing a variety of analyses that otherwise appear
cumbersome to conduct. The primary message this exercise
is intended to convey is that low-cost pathways towards the
introduction of formal methods do exist, and work in this
area promises to yield increasing opportunities for
beneficial applications of formal methods.

9. ACKNOWLEDGMENTS
The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space administration. Funding was provided under
NASA’s Code Q Software Program Center Initiative UPN
#323-08.

Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply its endorsement
by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

10. REFERENCES
[1] Ambriola & Gervazi: Processing Natural Language

Requirements. In Proceedings of the Twelfth IEEE
International Automated Software Engineering
Conference: 36-45, November 1997.

[2] Easterbrook & Callahan: Formal Methods for V&V of
partial specifications: An experience report. In
Proceedings of the Third IEEE International
Symposium On Requirements Engineering: 160-168,
January 1997.

[3] Goldin & Berry: AbstFinder, A Prototype Natural
Language Text Abstraction Finder for Use in
Requirements. In Automated Software Engineering
4(4): 375-412, October 1997.

[4] Leveson, Heimdahl, Hildreth & Reese: Requirements
specification for process-control systems. In IEEE
Transactions on Software Engineering: 20(9),
September 1994.

[5] Heitmeyer, Bull, Gasarch & Labaw: SCR* A toolset
for specifying and analyzing requirements. In Tenth
Annual Conference on Computer Assurance
(COMPASS '95): 109-122, June 1995.

[6] Johnson, Feather & Harris: Representation and
Presentation of Requirements Knowledge. In IEEE
Transactions on Software Engineering 18(10): 853-
869, October 1992.

[7] Owre, Rushby & Shankar: Analysing tabular and state-
transition specifications in PVS. Technical Report
CSL-95-12, Computer Science Laboratory, SRI
International, 1995.

[8] NASA: Formal Methods Specification and Verification
Guidebook for Software and Computer Systems.
Volume I: Planning and Technology Insertion, NASA-
GB-002-95 Release 1.0, NASA, Washington, D.C.,
July 1995.

[9] Russo, Nuseibeh & Kramer. Restructuring
Requirements Specifications for Managing
Inconsistency Analysis and Change: A Case Study. To
appear in Proceedings of the International Conference
on Requirements Engineering, 1998.

[10] Salek, Sorenson, Tremblay & Punshon. The REVIEW
System: From Formal Specifications to Natural
Language. In Proceedings of the First International
Conference on Requirements Engineering: 220-229,
April 1994.

[11] Swartout. GIST English generator. In AAAI-82
Proceedings of the National Conference on Artificial
Intelligence: 404-409, 1982.

[12] Swartout. The GIST behavior explainer. In AAAI-83
Proceedings of the National Conference on Artificial
Intelligence: 1983.

